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Stereoselective synthesis of (�)-ara-cyclohexenyl-adenine
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Abstract—A stereoselective synthesis leading to (�)-ara-cyclohexenyl-adenine is described. The synthesis starts from methyl-a-DD-
glucopyranose and involves an isomerization step, selective protection/deprotection chemistry, a Ferrier rearrangement and a Mit-
sunobu reaction. This is the first total synthesis of an enantiomeric pure ara-type cyclohexenyl nucleoside.
� 2007 Elsevier Ltd. All rights reserved.
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Figure 1. Structure of ara-cyclohexenyl-adenine and ribo-cyclohex-
enyl-adenine.
Modified nucleosides represent the most important class
of antiviral compounds.1,2 In the category of nucleoside
analogues with a ‘six-membered’ carbohydrate mimic
potent antiherpes activity has been found in the series
of cyclohexenyl nucleosides.3

The synthesis of (±)-ara-cyclohexenyl-adenine4 and of
(±)-ribo-cyclohexenyl-adenine5 has been described
(Fig. 1). These nucleoside analogues were synthesized,
likewise, because of their potential biological impor-
tance as antiviral agent. The obtained racemic mix-
tures4,5 can be used for a first antiviral screening
assay, but are neither useful for incorporation studies
in oligonucleotides nor for enzymatic studies. The ap-
proach of separating a racemic mixture into enantiomers
was less appealing for compound 1 as its total synthesis
from furan and acrylic acid4 had several drawbacks, a.o.
the non-selectivity of protection–deprotection chemistry
for the secondary alcohol groups and the time consump-
tion and low yield of some reactions.

Therefore, we envisaged a stereoselective synthesis of
compound 1, starting from naturally occurring carbo-
hydrates. Initially, our synthetic approach was based
on the palladium catalyzed asymmetric allylic alkylation
reaction, described for the synthesis of (+)- and (�)-
cyclophellitol.6 However, we were not very successful
in carrying out this reaction in good and reproducible
yields. The synthesis of the cyclohexenyl scaffold, which
is used for the synthesis of the nucleoside analogues, is
based on the work of Jung and Choe who synthesized
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cyclophellitol from DD-mannose.7 Our variant on this
carbohydrate-based approach starts from commercially
available and inexpensive methyl-a-DD-glucopyranose (3).

First, the 4- and 6-OH groups of methyl-a-DD-glucopyran-
ose were protected with a benzylidene group (Scheme 1),
followed by a two-step selective benzoylation of the
2-OH group via a stannylidene intermediate.8 The free
3-OH group was protected with the acid labile tetrahy-
dropyranyl group. After removing the benzoyl protect-
ing group in basic circumstances, the free 2-OH was
oxidized to a keto function and converted into a methyl-
ene group using Wittig conditions. The intermediate
keto compound 9 was not purified.

During the hydroboration reactions of 10 (Scheme 2),
the tetrahydropyranyl group was partially removed to
give a mixture of unprotected and protected com-
pounds. Therefore, we preferred to change the 3-OH
protecting group. The tetrahydropyranyl group was
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selectively removed using mild acidic conditions and
reprotected using benzyl bromide/NaH to give com-
pound 12. Hydroboration of 12 gives a 1:1 mixture of
diastereomers with a 2-hydroxymethyl group in the [R]
or [S] configuration. Since we only need the compound
with an equatorial hydroxymethyl group ([R] configura-
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tion), we carried out an isomerization step to convert the
2-[S] stereogenic centre into a 2-[R] stereogenic centre.
Therefore, the mixture of primary alcohols (13) was oxi-
dized and the obtained mixture of aldehydes (14) was
isomerized under mild basic conditions followed by
reduction using sodium borohydride. This approach
was previously described by Jung and Choe.7 It should
be noted that the success of this approach is highly
dependent on the purity of the starting materials (other-
wise the isomerization reaction is getting very slow). The
primary hydroxyl group was protected with a benzyl
group to obtain compound 16.

Selective cleavage of the benzylidene-acetal bond was
achieved using BH3ÆTHF and Cu(OTf)2

9 (Scheme 3),
without observing the formation of the 6-O-benzyl pro-
tected side compound.

This selective deprotection is needed to obtain the exo-
cyclic methylene compound 19 by an iodination-elimi-
nation step (Scheme 3). The desired enone 21 is then
obtained by a Ferrier rearrangement7,10 followed by
an elimination reaction. Selective reduction of the keto
group of 21 was, however, not absolute and a mixture
of two diastereoisomers 22a and 22b were obtained in
a ratio of 94:6. As the separation of 22a and 22b by col-
umn chromatography is tedious, we preferred to protect
the free HO group by benzoylation which resulted into
a more easily separable mixture of compounds. Re-
moval of the benzoyl protecting group of 23 yielded
22a.

Introduction of the adenine base moiety was carried out
under Mitsunobu type conditions11 (Scheme 4) and all
the benzyl protecting groups can be removed smoothly
using BCl3 in CH2Cl2.12 The obtained ara-cyclohexyl-
A is a mimic of a natural nucleoside in the DD-configura-
tion and shows an [a]D value of �83.0 (CH3OH, c 1).13

When tested in the replicon system (HCV) the com-
pound proved to be inactive.

In conclusion, the first stereoselective total synthesis of
an ara-type cyclohexenyl nucleoside is described, start-
ing from a commercially available carbohydrate.
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